
Stable Diffusion Ultimate Guide pt. 1: Setup

Let’s start from the basics, what is Stable Diffusion?

Have you ever wished you could turn your words into images? Imagine being able to write a
description of a scene, a character, or an object and see it come to life on your screen.
Sounds like magic, right?

Well, thanks to Stable Diffusion, this is now possible. Stable Diffusion is a revolutionary text-
to-image diffusion model that was released to the public by Stability.ai on August 22, 2022.
This cutting-edge tool allows users to input a text prompt and generate a corresponding
image with incredible accuracy.

But how does it work? And what makes it different from other text-to-image models?

In this blog post, we will give you an introduction to Stable Diffusion, explain its main
features and benefits, and we’ll install the 1111automatic UI.

What is Stable Diffusion?
Stable Diffusion is a system made up of several components and models. It is not one
monolithic model. As we look under the hood, the first observation we can make is that
there’s a text-understanding component that translates the text information into a numeric
representation that captures the ideas in the text.

This numeric representation is then fed into a diffusion model that generates an image pixel
by pixel. A diffusion model is a type of generative model that works by reversing the process

of diffusion. Diffusion is when something spreads out from a source over time. For example,
if you drop some ink into water, it will diffuse and create patterns.

A diffusion model does the opposite: it starts with noise (random pixels) and gradually
removes it until it reaches an image that matches the input. This process is guided by a
neural network that learns from data how to produce realistic images.

Stable Diffusion uses a state-of-the-art diffusion model called U-Diffuse, which was
developed by Stability.ai. U-Diffuse stands for Unconditional Diffuse, meaning that it can
generate images without any prior information or constraints. U-Diffuse can produce high-
quality images at any resolution up to 1024x1024 pixels.

What makes Stable Diffusion different?
Stable Diffusion has several advantages over other text-to-image models:

- It can handle complex and diverse prompts: Unlike some models that only work well
with simple or specific prompts, Stable Diffusion can generate images for any kind of text
input. You can write anything from abstract concepts to detailed descriptions and get realistic
results.
- It can preserve consistency across multiple images: One of the challenges of text-to-
image generation is ensuring consistency between different images generated from the
same prompt or related prompts. For example, if you ask for two images of “a cat wearing
glasses”, you would expect them to look similar but not identical. Stable Diffusion can
achieve this by using personal embeddings, which are unique identifiers for each prompt
that help maintain coherence across multiple generations.
- It can incorporate user feedback: Another challenge of text-to-image generation
is allowing users to control or modify the output according to their preferences. For example,
if you don’t like how an image looks or want to change some details, you would want to have
some way of telling the model what you want. Stable Diffusion allows users to do this by
using textual inversion, which is a technique that lets users edit the text prompt based on the
generated image and get an updated image accordingly.

How can I use Stable Diffusion?
Stable Diffusion is available as a free online tool at https://dreamstudio.ai.You can also
access it through various platforms such as Discord, Twitter, Reddit, etc.

Pay attention to the fact that you are going to need an Nvidia GPU to use this tool correctly.
Theoretically, you can use a CPU to generate the pictures but it’ll take a long time.

In this post, we are going to learn how to install everything we need on our machine.

AUTOMATIC1111/stable-diffusion-webui

https://dreamstudio.ai/

Introduction to Stable Diffusion Web UI
Stable Diffusion Web UI is a browser interface for Stable Diffusion. It is based on Gradio
library, which allows you to create interactive web interfaces for your machine learning
models.

Stable Diffusion Web UI has many features that make it easy and fun to use. Some of them
are:

Installing the Requirements
To install the tool we need to install the requirements. Let’s start by installing Python.

We need to install the version 3.10.6. If you already have Python installed on your machine
you’ll probably still need to install this version to make sure that everything is compatible. Go
to the following link, scroll to the bottom of the page and choose the correct version (you’ll
probably need the Windows 64bit version):

Python Release Python 3.10.6 | Python.org

Once you’ve downloaded the installer, open it and make sure to have flagged the “Add
Python 3.10 to PATH”. If you don’t flag that option, the automatic1111 installer won’t work
later!

Multiple Generation Modes: other than the classic text2image mode you can also
work with image2image and inpainting. By using extensions you can also unlock other
important tools as Controlnets, Outpainting and much more.
Negative Prompt: when you build a prompt, you have the choice to define a negative
prompt that explains to the model what are the things you don’t want in the generated
picture.
Extensions: you can install extensions built by the community to improve and expand
an already amazing tools (we are going to take a look at some of them in future posts).
Hypernetworks: You can fine tune the weights for CLIP and Unet, the language model
and the image de-noiser used by Stable Diffusion, using a method called
hypernetworks. Hypernetworks are generously donated to the world by our friends at
Novel AI in autumn 2022. They work in the same way as Lora except for sharing
weights for some layers.
And much (much) more!

https://www.python.org/downloads/release/python-3106/

The option you need to flag

Once you’ve installed Python we can now install the second requirement: GIT.

To download GIT, go to the following link and download the correct version:

Git — Downloads (git-scm.com)

Once you’ve completed the download, open the executable and complete the installation.
During the setup wizard you can leave everything as is.

Now we can check if everything is working as expected. Just open a terminal (cmd or
powershell) and write:

git

python

https://git-scm.com/downloads

You should see 3.10.6

If both of this commands works as expected we can now start installing the UI.

Installing the UI
GitHub — AUTOMATIC1111/stable-diffusion-webui: Stable Diffusion web UI

Go to an empty folder in which you want to install the UI, then press shift+right click and
choose: “Open a new Terminal Window Here” (Or a Powershell window if you are on Win10).

Now paste the following code in your terminal:

Git will now start downloading the UI. Once the download has finished we can now run the
UI. Go into the folder and double click on the file named: “webui-user.bat”.

This should start the download process for all the files needed by the UI. This can take a
long time (depending on your internet connection). In the meantime, we can take a look at
the models we can use.

Installing a Model

By default the UI will download Stable Diffusion 1.4, but we can download a custom model to
use with the UI. There are a lot of places where you can find a custom model, I usually find
myseulf using Civit.AI:

git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git

https://github.com/AUTOMATIC1111/stable-diffusion-webui

Civitai | Stable Diffusion models, embeddings, hypernetworks and more

On Civit.AI you’ll find a lot of models divided by their type (realistic, illustrations, anime…),
but you’ll also find LORAs, Hypernetworks and much more. To download a model, just
choose the one you’d like and click on the download button:

The downloaded models are usually available in two different formats: safetensors and ckpt.
Both of them are supported by the UI.

Once the setup of the UI has completed you can install the new model you’ve downloaded
by going to the UI folder and copying it into the path: models/stable-diffusion.

Using the Interface
Now that we have completed the setup we need to open the interface. To do this you just
need to open a new browser window and go to: http://localhost:7860.

This should open a window similiar to this one (I’ve got a lot of extensions and a different
skin so it’ll probably look different):

https://civitai.com/
http://192.168.1.63:7860/

Let’s have a look at the interface and explain the most important parameters.

On the top of the page we have the Stable Diffusion checkpoint. This is the model loaded
right now. You should see the following model selected:

If you want to change the model you just need to click on the arrow and choose a new model
(click on the refresh button on the right if you don’t see the other models).

Then we have the prompt section:

Here we can insert the prompt for our generation as well as the negative prompt. We can
also do the following by clicking the icons under the generate button:

Load the latest generation parameters
Clear the prompt

The last part we need to understand before we can start working with the UI is the
parameters section:

Here we have the following parameters:

Load a Textual Inversion, Hypernetwork, Checkpoint, Lora
Paste the selected style into the prompt and negative prompt
Save the current prompt and negative prompt into a style

Sampling Method: this changes the sampler used to diffuse the image. If you are a
beginner I suggest you to use Euler or DDIM as they are usually the fastest.
Sampling Steps: this changes the “length” of the diffusion. If this is too short the image
won’t be completed. If you use Euler or DDIM 15–20 steps are usually good.
Restore Faces: this fixes the faces by using another model. This is a destructive
process, it’ll create a different face from the one that was originally generated.
Tiling: this enables you to generate images to use as textures.
Hires. fix: this creates the image in the size you’ve defined, upscales it using one of the
upscaler models and then apply the same prompt using the image2image to add more
details.
Width/Height: this changes the size of the image generated. Larger images need
more VRAM to generate.
Batch Count: the number of batches of images to generate. This is multiplied by the
“Batch Size” option

Generating an Image
We can finally generate an image. Let’s start by writing the following prompt:

a painting of a dog riding a skateboard at the beach, masterpiece, detailed, 4k

We also add the following to the negative prompt:

blurry, out of focus, bad quality, lowres, text, error, cropped, worst quality, low quality, jpeg
artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands,
poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad
anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed
limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers,
long neck, username, watermark, signature

For the parameters you can use these as a good starting point:

Batch Size: the number of images generated in parallel. You’ll need a lot of VRAM to
increase this parameter.
CFG Scale: how much the prompt will influence the output. Low values will generate
images much different from the prompt, while high values will generate a lot of
distortion. Usually a value between 7–9 is a good starting point.
Seed: this is the seed used to generate the image. Using the same seed with the same
parameters and prompts will always generate the same picture. This can be useful to
check how an image changes based on the parameters or prompts. -1 equals to
random seed.

If you run this prompt you should now see the generated output. For example these are 4
images generated using my prompt:

Stable Diffusion Ultimate Guide pt. 2: Prompting

In the previous chapter we’ve seen how to install the automatic1111 UI and it’s requirements
on your machine. In this chapter, we will cover some aspects of Stable Diffusion that can
help you improve your results and customize your prompts. We will discuss:

- Basic prompting: how to use a single prompt to generate text, and how to evaluate its
quality and stability.
- Changing prompt weights: how to adjust the importance of each prompt keyword in
relation to the others.
- Prompt Editing: how to change the number of steps that the model takes for a specific
prompt.
- Prompt order: how to order your prompts according to their relevance and impact.
- Prompt matrix: how to use a matrix of prompts to test different variations in a single run.

By learning these concepts, you will be able to master Stable Diffusion and create high-
quality texts for any purpose.

Basic Prompting
Learn the Checkpoint
Let’s start by the basics. The first thing we need to understand when we write a prompt for a
specific Stable Diffusion checkpoint is how the checkpoint has been trained.

For example the standard SD1.4 model has been trained to work with natural language
prompts while other checkpoints work better with keywords separated by commas.

In SD1.4 this prompt:

a child drawing of a cat playing a piano on a desert island in the summer, detailed, HD,
colorful

Works better than this one:

child drawing, cat, playing a piano, desert island, summer, detailed, HD, colorful

When you download a custom checkpoint, always check if there is any hint about how the
model should be prompted in the description. Another quick way to understand how to
correctly use the model is to check some example prompts made by the creator of the
checkpoint or by the community.

As a quick reminder, you can find new checkpoints online. I usually get them from
civitai.com:

Civitai | Stable Diffusion models, embeddings, hypernetworks and more

Quality Prompts
Another important thing to remember when prompting is to use words that can impact the
quality of your picture. When image are trained in Stable Diffusion they are usually
accompanied by adjectives that describes the quality of the image. These can be positive
(beautiful, detailed, masterpiece) or negative (bad, awful, deformed). Using these in your
prompts can drastically change the quality of your picture.

For example the following prompt:

winter landscape, mountains, trees, 8k uhd, dslr, soft lighting, high quality, film grain, Fujifilm
XT3, RAW photo

https://civitai.com/

Is better than this one:

winter landscape, mountains, trees

Using Styles
A useful thing to know when you are using the automatic1111 UI is the possibility to save and
load prompts by using the “Styles” functionality.

To do this you just need to write a prompt as you’d usually do and then just click the file disk
icon on the right (under the generate button):

Then just choose a name for the style and save it.

Now you can call that prompt by selecting it in the styles box under the icons. If you want to
paste the style into your active prompt you just have to click the clipboard on the left of the
file disk icon.

Now that we’ve seen the basics of prompting let’s have a look at something more
interesting.

Prompt Weights
When writing a prompt each word you use has the same relevance inside of the sentence.
But what if you’d like to emphasize the importance of a single part of your prompt?

You can do this in the automatic1111 UI by using brackets:

Pay attention that if you want to decrease the importance of a word by a specific factor you
need to use round brackets, while if you want to quickly do it you have to use square
brackets. If you do something like [word:0.5] it won’t work (and you’ll understand why in the
next paragraph).

So for example the following prompt:

a red cat wearing a green hat and glasses, masterpiece, detailed, painting in the style of van
gogh

Produces the following image:

a (word) - increase attention to word by a factor of 1.1
a ((word)) - increase attention to word by a factor of 1.21 (= 1.1 * 1.1)
a [word] - decrease attention to word by a factor of 1.1
a (word:1.5) - increase attention to word by a factor of 1.5
a (word:0.25) - decrease attention to word by a factor of 4 (= 1 / 0.25)
a \(word\) - use literal () characters in prompt

But if you use the following prompt:

a red cat wearing a green hat and glasses, masterpiece, detailed, (painting in the style of
van gogh:1.2)

The style will be more similar to the one specified in the prompt:

You can also use the same syntax in the negative prompt to change how the prompt will
affect the final composition.

Prompt Editing
Prompt editing is an incredible feature that everyone using Stable Diffusion should know.
Prompt editing allows you to start sampling one picture, but in the middle swap to something
else. The base syntax for this is:

[from:to:when]

This enables you to start by creating a picture for a concept and then change it after a
specific number of steps.

There are also 2 alternative syntaxes for this functionality:

You can specify the number of steps in two different ways:

[to:when] - adds to to the prompt after a fixed number of steps (when)
[from::when] - removes from from the prompt after a fixed number of steps (when)

Using an integer: this determines the exact number of steps after which the prompt is
changed

Let’s have a look at some examples:

a red cat wearing a green hat and glasses, masterpiece, detailed, [3d model:(pencil
drawing:1.4):0.5]

This prompt generates a drawing with a perspective similar to a 3D model:

If you repeat the same prompt without the prompt editing part you’ll produce a totally
different result:

Using a float: this determines the percentage of steps after which the prompt is
changed. For example: 0.5 means that half the steps are done with the from part while
the other half is done with the to part.

Another example:

Let’s start from a simple prompt:

painting of a modern city

The output:

But what if we change the prompt to include abstract after 25% of the steps:

painting of a modern [abstract:0.25] city

Using the same seed this is now the result:

A similar image, but with a completely different style!

Exploring Prompt Order
Another interesting thing to know about prompting in Stable Diffusion is that the order of the
words inside the prompt can change drastically the output image.

Take for example the following prompt:

painting of a glass on a table in the style of Pablo Picasso, abstract, (masterpiece, detailed,
HD)

Output:

If we put abstract at the beginning of the prompt and run the same seed:

abstract painting of a glass on a table in the style of Pablo Picasso, (masterpiece, detailed,
HD)

As you can see the final results is different from the original!

X/Y/Z Plot
Now that we’ve seen some of the functionalities you can use in the UI, how can you
compare different prompts with each other?

To try different prompts in one go you can to the script section on the bottom of the
prompting menu and choose the X/Y/Z Plot:

You should now see a menu that looks like this:

Here you can choose different attributes to plot on the three different axes. So let’s try
building a plot to check how a seed changes based on the prompts.

Let’s start by writing a prompt. I’ll use the following:

3d model of a cat standing on a table in a forest, (masterpiece, detailed, HD)

Now we can change the “X Type” option to “Prompt S/R”. This function search for a string in
your prompt and replaces with a list of strings you define inside the X values generating one
image per word. The first word must be already present inside the prompt. In my case I’ll
use: 3d model, painting, pixel art.

On the “Y Type” option we choose “Seed”. In this field you can specify a list of seeds
separated by a comma; this will generate an image for each seed you specify. If you want a
random seed just use -1. In our case I’m going to use: -1,-1,-1.

So your settings should look like this:

If you run the prompt you should see a result similar to this:

And that’s all for today!

Stable Diffusion Ultimate Guide pt. 3: High
Resolution

In the third chapter, we are going to have a look at how to work with higher resolution
images. Stable Diffusion v1.5 is trained on 512x512 images (while v2 is also trained on
768x768) so it can be difficult for it to output images with a much higher resolution than that.
To do this consistently, we’ll need to do a few tricks.

For today’s example, I’m going to use my own custom checkpoint (model) that you can find
here:
Mistoon_Anime | Stable Diffusion Checkpoint | Civitai

Requirements
To follow this example, you’ll need:

Let’s Start
Open the Stable Diffusion UI and start from a blank prompt. If you want, you can copy my
prompt or use yours.

Prompt:

The Automatic1111 Stable Diffusion UI. If you don’t know how to install it, check out the
first part of this series here: https://medium.com/p/bd7dbcd5ce4b
A GPU that can handle images of 768x1152 size. I’m using a RTX 4080 with 16 GB of
VRAM. In case you have access to less VRAM, you’ll probably be able to work with a
lower resolution.
An image editing program. I’m using Krita (which is an awesome free digital painting
application), but you can use your preferred tool (Photoshop, Gimp, Paint.Net…).
(Optional): a textual inversion for the negative part. For this example I’m using this one.

https://civitai.com/models/24149/mistoonanime?source=post_page-----a4f5d7b60f38--------------------------------
https://medium.com/p/bd7dbcd5ce4b
https://krita.org/
https://civitai.com/models/11772/verybadimagenegative

girl, standing, short hair, red hair, pigtail, suit, tie, professional, office, indoors, glasses,
dynamic pose

Negative Prompt:

verybadimagenegative_v1.3

Other Properties:

If you use these settings with the seed “312189762”, you should see the following image:

Let’s say that we like the general result, but we want to fix a few things:

To make these changes we could use the inpainting functionality and change the single
elements, but today I’m going to show you how not only to change these elements, but also
upscale the resolution in a convincing way.

The right hand looks distorted, so we’ll have to change it.
The TV screen on the left has some strange drawings on it. I’d like to make it pitch
black.
I’d like to change the tie color to red.

The first thing we need to do is to upscale the image using the upscale functionality from the
Extra tab. We are going to do this before editing because the upscale can introduce some
distortion that we can fix later. You can copy the image and paste it inside that tab, or just
click on the “Send to Extras” button:

Once you’ve opened the tab, change the settings to match my picture and then run the
upscale by clicking the generate button:

If you’ve never used the “SwinIR_4x” upscaler, it will take some time to download it.

Now, let’s open the image editing software (as I’ve said before, I’m going to use Krita). Copy
the picture from the upscale output and once inside the software just paste it (use
ctrl+shift+n in Krita to paste into a new window):

Once inside the editor, let’s start by cleaning the hand. We are not going to draw a correct
hand, but we just need to give it a shape that SD can use to create a new hand.

Select the brush tool (b) and choose a color from the TV by holding CTRL and then clicking
with the left mouse button on the television screen. Once you’ve selected the colors, remove
the crooked finger and clean the hand.

Something like this should work (as I’ve said before, you don’t need to be precise):

Now let’s do the same on the TV screen. In this case, you can probably use the “Smart
Patch Tool” to rapidly clean most of the screen:

The result should look like this:

Before we work on the tie, let’s also clean the other hand:

As you can see, the upscale has created a lot of distortion. We can simplify the shape so
that SD will be able to create a nicer hand easily:

Now let’s start working on the tie. We have different ways to do this:

In this example, we are going to use the second method. Let’s start by selecting the tie using
the “Bezier Curve Selection Tool”:

Just click around the tie to select the points. You don’t need to be super-accurate, we can fix
this later. Once you’ve completed the selection, just copy the selection by clicking ctrl+c and
then paste it using ctrl+v. You should now see a new layer containing your selection:

We can just fill the shape of the tie with the red color
We can use the hue tool to change the color of that part of the image

And this is my selection (with the background disabled):

Now that you have the layer selected, go to the toolbar on the top of the screen and choose:
Filter -> Adjust -> HSV Adjustment

You should now see a window that looks like this:

Now try to change the settings and see if you can change the tie to the red color, then click
on “OK”:

Now we need to clean the border of the tie. Let’s just select all by doing ctrl+a and then pick
the brush tool (b).

To clean this, I usually create a transparency layer and then use that to remove the
incriminated pixels. To do this, right-click on the tie layer and choose: Add -> Add
Transparency Mask

You should now see the transparency mask under the layer:

When you have this mask selected, you have only access to greyscale colors. In this mask,
white equals to full opacity while white means full transparency. Choose the color black
using the selector in the upper right corner and start coloring the border of the tie until you’re
satisfied with the result:

We also need to fix the color of the stripes inside the tie. Select the tie layer (don’t select the
transparency layer, otherwise you won’t be able to color the tie) and the use the brush tool to
color it:

The last thing I’m going to fix are the glasses. After the upscale, they have been distorted a
lot:

After the edits:

So this should be the final look of the image:

Now we can select all by using ctrl+a and then copy everything by pressing ctrl+shift+c. Now
go back to Stable Diffusion and go to the img2img tab. Once there, paste your image:

Now go back to the txt2img tab and copy over the prompt and negative prompt to the
img2img tab. After that we need to change a few of the settings in the img2img tab:

The most important settings here are:

Height and Width: these should correspond to the size of the picture we’ve edited. If
your GPU doesn’t have enough VRAM, you can try to lower these (make sure to keep
the aspect ratio)
Denoising Strength: this parameter changes how much the input image is changed.
With 1 you’ll get a completely different image, while with 0 you’ll get the same image. I
usually use a value between 0.5 and 0.7 depending on how much I’d like to change the
starting image.
Sampling Method: when I work with the img2img or the inpainting process, I usually
select DDIM with 30 steps

We can now process the image. You can repeat this step until you get a result you’re
completely satisfied with, in my case the second generation was pretty good:

On the left the input, on the right the final generation

As you can see by using a “Denoising Strength” of 0.65 the image was modified a little, but
the general style is still there.

Going deeper: using LoRAs
This technique is particularly useful when working with LoRAs using a high weight. LoRAs
tend to introduce distortion on the pictures and reduce the overall details, so by using this
method you can clean the image and get a higher resolution.

Let’s check an example. I’m going to use my 80s fantasy LoRA which is prone to introducing
distortion on Anime images (as it was trained on movie posters):

80s Fantasy | Stable Diffusion LORA | Civitai

Let’s start by using this prompt and the same settings as before:

girl, standing, armor, fantasy, isekai, chainmail, fighting pose, outdoors, night, stars, aurora,
80s, <lora:80s_fantasy:0.7>

https://civitai.com/models/24228/80s-fantasy?source=post_page-----a4f5d7b60f38--------------------------------

And let’s use the following settings:

The seed is “4156146595” if you want to copy-paste it.

You should get this image:

As you can see, the general style is ok, but the colors are distorted and the overall image is
a bit blurry. Let’s start by upscaling it, as we’ve done in the previous example, and then use
Krita to clean some of the details. This is the final result:

Now we just need to pass the image to the img2img as we’ve done in the previous example.
In this case you can experiment with the weight of the LoRA to reduce the distortion. This is
the final result for me:

As you can see, the style from the LoRA is still there, but the image is a lot more defined and
clean.

Stable Diffusion Ultimate Guide pt. 4: Inpainting

In the last 3 chapters, we’ve seen:

Today we are going to have a look at how to inpaint a picture to change a specific part. This
is a fundamental step in generating high quality images without having to generate
thousands of them.

The model we are going to use for this example is my Mistoon_Ruby v1:

Mistoon_Ruby | Stable Diffusion Checkpoint | Civitai

Requirements
To follow this example, you’ll need:

How to set up the Automatic1111 SD GUI
How to write effective prompts for a specific model
The workflow to create sharp high resolution pictures.

The Automatic1111 Stable Diffusion UI.
A GPU that can handle images of 768x1152 size. I’m using a RTX 4080 with 16 GB of
RAM. In case you have access to less VRAM, you’ll probably be able to work with a
lower resolution.
(Optional, but highly recommended): An image editing program. I’m using Krita (which
is an awesome free digital painting application), but you can use your preferred tool
(Photoshop, Gimp, Paint.Net…).
(Optional, but highly recommended): a textual inversion for the negative part. For this
example I’m using this one and this one.
(Optional): my model Mistoon_Ruby in both the Standard and Inpainting version

https://civitai.com/models/26332/mistoonruby?source=post_page-----772ea69472c9--------------------------------
https://krita.org/
https://civitai.com/models/11772/verybadimagenegative
https://civitai.com/models/16993/badhandv4-animeillustdiffusion

Let’s create a picture to inpaint
Let’s start simple, I’m going to use the following prompt:

For the negative prompt, I’m going to use the textual inversions I’ve indicated in the
requirements:

The rest of the settings are the following:

The seed is 2364540557.

If you run this prompt with my Ruby model, you should get an image that looks like this:

girl, standing, desert, rocks, day, sky, clouds, samurai, katana, kimono,

fighting pose, upper body, cinematic

verybadimagenegative_v1.3, badhandv4

Let’s upscale this using the procedure I’ve explained in the previous chapter.

And you should get something that looks like this:

This is a good starting point, so copy the picture and go to the inpainting tab (or press the
send to inpainting button).

Inpainting
So how does the inpainting process work? Let’s start by looking at the interface:

As usual, you’ll find the prompt and negative prompt section. This can work differently based
on how you are inpainting the image, but I’m going to explain this later.

Let’s check out what each single setting does:

Resize Mode: this setting works the same as the img2img one. It changes how the
image is upscaled when necessary.
Mask Blur: this changes how much the inpainting mask is blurred before running the
prompt. This helps to avoid sharp edges on the inpainted image.
Mask Mode: this changes how the mask works. “Inpaint masked” changes only the
content under the mask you’ve created, while “Inpaint not masked” does the opposite.
Masked Content: this changes the process used to inpaint the image. Pay attention to
the fact that some options only works for specific sampling methods (for example,
DDIM works only with Original or Fill)

One last thing before we start, we need to change the model to the inpainting version. This
is not required, but usually improves the quality of the output. To do this, select the inpainting
model from the selection above:

Ok, now we have set up everything, let’s start from something simple. Let’s remove the
handle of the sword appearing from her back:

To do this, we have two different ways:

Inpaint Area: this changes which part of the image is inpainted. If you use whole
picture, this will change only the masked part while considering the rest of the image as
a reference, while if you click on “Only Masked” only that part of the image will be
recreated.
The rest of the settings are the same as the img2img panel. The most important one is
the: “Denoising Strength”. This changes how much the generated image will differ from
the original one. If you set this to 1 it will generate a completely new image, while 0
while give you the same picture.

We can use the inpainting editor already available inside the GUI. This editor has two
different options: inpaint which changes the image using the same colors of the original
or inpaint sketch which gives you the ability to color and replace a specific part of the
picture. I usually don’t use the interface as it’s pretty limited and hard to get the results I
want.
We can use an image editor (I’m going to use Krita), to color and edit the image to
match what we have in mind.

In our case, we are going to choose the second option, so let’s open Krita (or your favorite
image editing software).

Once in Krita, we just select the Brush (b) and while keeping “Ctrl” pressed, we select the
color of the background. After that, we draw over the handle:

In this case, we could also skip the inpainting part as the result is already good, but let’s just
try and see what it does. Copy the picture back to the inpainting tab (select all with ctrl+a
and then copy with ctrl+shift+c).

Now, using the inpaint brush, let’s apply a mask over the part we’ve just edited:

Let’s now choose DDIM as our sampler and Fill as our inpaint method:

Let’s run the generation:

We now have a new rock in the background! Let’s do something more interesting, and fix the
sword. To do this, copy the image and paste it back to Krita (ctrl+shift+n to create a new
image or ctrl+v to paste it into a new layer).

Once there, let’s draw the missing part of the blade. When drawing on a picture, I
recommend creating a new layer, so you can edit the image in a non-destructive way. You
don’t need to be precise, just draw the rough shape using the same colors from the picture:

As you can see, it’s far from perfect. Let’s copy this back into SD, and apply a mask over the
blade:

Try experimenting with the denoising strength (in my case, I’m using: 0.65):

Now we can fix the face. As usual, copy the picture back to Krita. Now let’s choose the
“Bezier Curve Selection Tool”:

With this, let’s make a selection over the right eye, copy and paste it to a new layer, and then
move it a little to the right. You’ll also need to cover the eye on the layer below using a white
brush. And while we are at it let’s also clean all the other imperfections, this should be the
final result:

Now let’s go back to the UI and paste it back to the picture. Then we can create a mask over
the face:

For this step, let’s also use the “Only Masked” option under the “Inpaint Area” section. This
will output a sharper and more detailed image:

As usual, feel free to play with the settings until you’re satisfied with the result:

Now let’s try fixing the right hand. Hands are usually the most difficult part for any image
generation model, so it can be difficult to get it right. Let’s start by roughly fixing the hand in
Krita:

Now let’s go back to the UI and create the mask:

Now let’s lower the “Denoising Strength” to 0.5 and run the generation:

The last thing I want to change is the ribbon, this time let’s go to the txt2img tab and create
something to add to the image.

This is the prompt I’m going to use:

The negative prompt:

The other settings:

The seed is: 2407360043

And this is the final output:

(gold:1.2), dragon head, icon, (transparent background:1.4)

verybadimagenegative_v1.3, badhandv4, cropped

Now let’s copy this into a new image in Krita (you can use ctrl+shift+n).

The first thing we need to do is to remove the white background. To do this, go to Filters →
Colors → Color To Alpha. Change the threshold to remove the background and press: “OK”:

Now copy the image and paste it back to the previous one. Once there, select the
“Transform” tool from the sidebar:

Now resize the picture to fit the image:

Now copy back the image to the SD UI and create the mask. After that, copy the prompt
from the txt2img tab into the inpaint panel and use the following settings:

Now you should have something like this:

So let’s have a look at how we’ve changed the image from the original one:

On the left the original, on the right the final

Not bad right? And that’s all for today, feel free to experiment with the settings and the
different approaches.

Stable Diffusion Ultimate Guide pt. 5: ControlNet

In the fifth chapter of our Stable Diffusion guide, we are going to take a look at an incredibly
powerful tool for image generation: ControlNet.

ControlNet enables us to guide the generation of our pictures in a non-destructive way. For
example, take a look at the following example:

Courtesy of the ControlNet Github page

In the above example, we have an input image which gets elaborated using a Normal map
(you can see the map as the first result on the right). This normal map is then used by SD to
generate an output incredibly similar to the original input!

Right now, there are 14 different ControlNet models (11 production-ready and 3
experimental). In this guide, we are going to see how to install everything we need and then
use the ControlNet extension to generate awesome pictures.

Setting up the extension
Let’s start by installing the extension, click on the “extension” tab on the top-right of the
page:

Now go to the “Available” tab:

Click on “Load from” and wait for the UI to load the list of extensions. Once you see the list,
search for controlnet. In the list you should find: “sd-webui-controlnet”. Click on install, wait
for it to install and then close the UI (you need to close the command prompt, not the page).

Before starting the UI with the new extension we need to download the Controlnets models.
Go to the following

ControlNet 1.1 Models - Canny | Stable Diffusion Controlnet | Civitai

Here you’ll find all the 14 different models. For this example, I’m going to use Canny and
Openpose, but feel free to download the ones you like.

Once you’ve finished downloading the models you need, just put them inside this folder:

Now we can run the UI again, you should see the prompt installing the requirements. When
everything is ready, open the UI page in the browser and you should now see a new tab in
the txt2img and img2img page:

Using ControlNet
Let’s start from the Openpose ControlNet. For this tutorial I’m going to use my custom
model, but you can use any model you want:

Mistoon_Anime - v1.0 | Stable Diffusion Checkpoint | Civitai

For this example we are going to use the following pose:

stable-diffusion-webui\extensions\sd-webui-controlnet\models

https://civitai.com/models/38784/controlnet-11-models?source=post_page-----6f45e9614119--------------------------------
https://civitai.com/models/24149/mistoonanime?source=post_page-----6f45e9614119--------------------------------

You can download the picture from above or search for different poses on CivitAI (there are
hundreds). Now go to the Controlnet tab and drag and drop (or click on the box and select)
the image you’ve just downloaded:

Now let’s have a look at the options available:

The first thing we need to do is to click on the “Enable” checkbox, otherwise the ControlNet
won’t run. Once we’ve enabled it, we need to choose a preprocessor and a model. In this
case, we won’t need a preprocessor because the image we are using is already processed
(we are going to use it for the second example). In the model section, we need to choose the
ControlNet openpose model.

We can also change the weight and the starting and ending control steps for the model. The
weight will change how much the pose picture will influence the final picture. Lowering the

weight will make the output pose different from the one passed to the ControlNet, while a
higher weight will increase the similarity. The other two options will change the number of
steps on which the ControlNet will be applied. For example, if you have 20 steps, and you
change the “Starting Control Step” to 0.5, this will mean that the first 10 steps will be
generated without the ControlNet, while the second half will be generated with the network
on.

The other options are:

Now we can generate our picture. Let’s use the following prompt and run the generation:

If everything worked correctly, you should see two different outputs:

Control Mode: this changes the importance of the ControlNet over your prompt.
Change this if you see that the ControlNet is too strong or weak over the prompt.
Resize Mode: this changes how the ControlNet input picture is resized to match your
output settings.

girl, casual clothes, summer, outdoors, park, short_hair

As you can see from the above picture, the pose is correctly applied.

Let’s try using the Canny model. For this example we are going to use the following image:

As we’ve done before, just download the picture and pass it to the ControlNet extension.
Once you’ve done this, enable the “Allow Preview” checkbox, choose “Canny” as
preprocessor and click on the “explosion” icon. You should now see the preview of the
preprocessor:

Now that we have seen that the preview looks good, we can now change the model to the
controlnet_canny one and run the generation again.

You should now see a picture that looks similar to this one:

As you can see the image is incredibly similar to the original one, but with different colors. If
we want to maintain the general composition, but still change the image, we can lower the
weight to 0.35 and run this again:

Stable Diffusion Ultimate Guide pt. 6: Workflow

In this sixth chapter of the Stable Diffusion guide, we are going to take a look at how I
usually create my pictures.

As usual, I’ll be using my custom model:
Mistoon_Anime - v1.0 | Stable Diffusion Checkpoint | Civitai

Requirements
To follow this example, you’ll need:

Let’s Start
Open the Stable Diffusion UI and start from a blank prompt. If you want, you can copy my
prompt or use yours.

Prompt (you’ll need the LoRAs mentioned above):

The Automatic1111 Stable Diffusion UI.
A GPU that can handle images of 768x1152 size. I’m using a RTX 4080 with 16 GB of
RAM. In case you have access to less VRAM, you’ll probably be able to work with a
lower resolution.
An image editing program. I’m using Krita (which is an awesome free digital painting
application), but you can use your preferred tool (Photoshop, Gimp, Paint.Net…).
(Optional): a textual inversion for the negative part. In this example I’m using
these: one and two.
(Optional): the following two LoRAs: Summer and Stylish

girl,outdoors,

knight,(armor:1.2),upper_body

https://civitai.com/models/24149/mistoonanime?source=post_page-----6be78130eb9e--------------------------------
https://krita.org/
https://civitai.com/models/11772/verybadimagenegative
https://civitai.com/models/16993/badhandv4-animeillustdiffusion
https://civitai.com/models/32090/summer-style
https://www.patreon.com/posts/stylish-lora-83763580

Negative Prompt (you’ll need the Textual inversions mentioned above):

Other Properties:

If you want to follow along with the same picture you can use the same seed I’ve used:
1992297571:

<lora:summer:0.6> <lora:stylish:0.6>

verybadimagenegative_v1.3 badhandv4

Before we can start working with this picture, you’ll probably need to enable an option. Go to
the settings tab and change the Upscaler for img2img settings as shown below (don’t forget
to click on apply settings!):

Now we can go back to the txt2img tab and click on the “Send to img2img” button:

Now the img2img tab should open automatically. The first thing I usually do is just to upscale
the picture to 768x1152. To do this, we just need to change a few parameters on the page:

1–2: Change the resolution to 768 (Width) and, 1152 (Height)
3: Change the denoising strength to 0.5. This should add details to the picture without
changing the original picture too much.
4: Set the seed to random. If you’ve used the seed I’ve mentioned above you’ll probably find
it on this page as well, just write -1 or click the dice button

After that, change the Batch Count and Size accordingly to what your system is capable of
managing (if you don’t know what you are doing, just keep them at 1) and click generate.

Now choose the best looking picture, or just generate another batch until you are satisfied.
I’ll be using this one:

Now that we’ve a detailed enough picture, it’s time to work on some changes. These are the
changes we are going to work on:

Let’s start by opening Krita and pasting the image into it (just press CTRL+SHIFT+N with the
picture copied from the browser):

Let’s start working on the arm. Before we begin there is another thing we need to fix: the tree
behind the character is missing a piece:

1. Remove the armor from the left arm
2. Add gold details to the armor
3. Change the overall structure of the armor

To help us draw the missing part of the tree we can use the “infinite ruler” from the assistant
tools. We just need to click on the icon:

Then you need to go to the menu on the right and select the tab “Tool Options”. In that tab
you’ll find the “Infinite Ruler” setting:

Now we can click on the picture to draw the two rulers to help us draw the tree:

Now select the brush tool (or press B) and you should see the full rulers:

We can now start working on the arm. You don’t need to be a professional artist to make
these changes (I am pretty bad at drawing), you just need to draw in a way that SD will be
able to understand when working on the picture.

After a few changes, this is how my picture looks like:

We are going to do the repeat the same process for the other steps. If you need to use a
picture as a reference in Krita, you can just copy that picture and then add it as a reference
using CTRL+SHIFT+R.

And this is the final result after the other edits:

Now we can copy back this picture to Stable Diffusion and let’s run the generation again with
a lower denoising strength. After a few generations, I’ve chosen this one for the next step:

Now, before we upscale this picture to 1280x1920 (repeating the same steps we’ve done
before) we need to fix the imperfections introduced with the previous generation. Let’s copy
the picture back to Krita and clean it. I won’t detail step-by-step of the process, as it’s not
really related to the topic of the tutorial. In my case, the cleaned picture looks like this:

Now we can paste the picture in the img2img tab and change the settings to match these:

To generate a picture of this size, you’ll need a capable GPU. If you receive an out-of-
memory error, just reduce the size until you are able to generate the picture (remember to
always keep the size ratio). If you create a picture at a lower resolution, you can always
upscale it later.

Also notice that the “Denoising Strength” is very low this time. This is because we don’t need
to make changes to the picture

The final result should be something like this:

The next step is to improve the facial details. For this step, I also want to change the eye
color. To do this, let’s start by adding “brown_eyes” to the prompt and the go to the inpaint
tab:

Now that we are in the inpaint section, we need to draw a mask on the face of the character
(I’ve made a tutorial about this, check my previous chapter). I usually draw the mask a bit
larger than it should be as it seems to output better results. So in my case this is what I’ve
drawn:

Now that we have our mask we need to change a few settings below:

1: Set the inpaint area to only masked. This forces SD to inpaint just the area we have
selected using the full resolution, giving us a much more detailed output
2–3: Change the size to 768x1152 or 512x768. Using a higher resolution usually gives you
much more details, but is prone to making mistakes. Using a resolution closer to 512px is
safer.
4: Change the denoising to 0.5. This is my go-to denoising strength in most of the cases. If
you feel that the image is not changing enough, increase it otherwise decrease it.

Now, as usual, run the generation and pick the best result. In my case this is now the
picture:

Now I also want to change the hairstyle a little bit. Let’s create a mask on the left side of her
head:

Now add to the prompt (braid:1.2), change the denoising strength to a higher value (0.6–
0.65) and the size to 512x768. Then run the generation (you’ll probably need to run this a
few times before getting a good result):

We could go on and add more details, but for this tutorial these edits should give you an
idea. We are finally reaching the final step: cleaning the image. This step is divided in two
different activities:

Here’s the complete picture:

Cleaning the image manually using Krita (or the editor of your choice)
(Optional) Passing the final image to a final img2img generation with a very low
denoising strength

And here’s a comparison with the original picture

Stable Diffusion Ultimate Guide pt. 7: Tips and
Tricks

In this chapter we are going to take a look at a few tips and tricks to use in Stable Diffusion
and also some scripts, embeddings and extensions that can help you create awesome
pictures.

Tips and Tricks
Use “Only Masked” inpainting for better quality

One of the most overlooked features for a beginner when Inpainting is the “Only Masked”
checkbox. This option change how the Inpainting process works:

Using the “Only Masked” checkbox is really useful when adding details to a high resolution
picture. For example, here’s a face generated from img2img using a resolution of 768x1152:

And here’s the same resolution output but inpainted using the “Only Masked” option
(512x768):

Whole Picture: This means that the input of the inpainting process will be the whole
picture, while the output will be the original picture with the replaced inpainted part
Only Masked: This means that the input of the inpainting process will be only the
masked area (with some padding). By doing this the masked area will be upscaled to
match the resolution defined inside the UI, then it will diffuse the inpainted area, and
finally it will place back the generated picture inside the original one.

As you can see, the difference is incredible!

Enlarge the mask when inpainting small details (Only
Masked)
When working with smaller details using the “Only Masked” option, it can be difficult to
generate a picture that fits the masked selection.

For example, if we try to apply a mask around the right hand of this character:

You’ll get results like these:

These are pretty funny, but not very useful. You could also change the prompt to match what
you’d like to see in the inpainted part, but I often find myself using this trick. Let’s say that we
have this mask applied to the picture:

To make it work correctly, we just need to enlarge the mask to let Stable Diffusion see more
of the picture. To do this, we add a small dot in a place far from the hand (usually near the
face).:

And here’s the final result:

Experiment with high LoRA weights
The checkpoints of Stable Diffusion tend to be repetitive when working with similar prompts.
Using some LoRA with a high weight is a good way to create some variations of the images.
Let’s see an example:

Here’s the prompt:

detailed_background,outdoors,sidelocks,long_hair,bonnet,high_collar,frilled_dress,orokudes
u,blush,morning_glory,absurdres,blue_hair,white_shirt,frills,1girl,highres,dress

If I use my Mistoon_Anime v2 model, I’ll get a bright and colorful picture, but what if I want
something gloomier? Let’s firstly take a look at a random picture generated without LoRA:

As you can see, the picture has a particular style which is influenced by my checkpoint. Let’s
try using my custom LoRA sketchy to create something with a different vibe. I’m going to use
a high LoRA weight of 0.8 because I’m more interested on the overall style than the
distortion caused by the LoRA:

https://civitai.com/models/24149/mistoonanime

Now that we have our picture, let’s use this in the img2img tab, but without the LoRA we’ve
applied:

As you can see, we have now a picture with the style of the original checkpoint, but with the
vibe of the LoRA.

You can do the same thing when using high (or low) values of CFG!

LoRAs and Embeddings
Some negative prompts
When starting with Stable Diffusion, a lot of people underestimate the importance of the
Negative Prompt. This feature can drastically change the final result, especially when used
with good embeddings.

Here’s my standard negative prompt:

This prompt uses the following embeddings:

 By bad artist -neg badhandv4 notxt nobg verybadimagenegative_v1.3

badhandv4 — AnimeIllustDiffusion — badhandv4 | Stable Diffusion Textual Inversion |
Civitai
[Bad artist Negative embedding — Bad artist anime | Stable Diffusion Textual Inversion
| Civitai](https://civitai.com/models/5224?modelVersionId=6057
veryBadImageNegative — veryBadImageNegative_v1.3 | Stable Diffusion Textual
Inversion | Civitai
My textual inversions: https://civitai.com/models/33873?modelVersionId=25820

https://civitai.com/models/16993/badhandv4-animeillustdiffusion
https://civitai.com/models/5224?modelVersionId=6057
https://civitai.com/models/11772?modelVersionId=25820
https://civitai.com/models/33873?modelVersionId=25820

And here’s an example of a picture without and with the embeddings:

You can also find my personal embeddings here:
Inzaniak's Lazy Textual Inversions - BadPic | Stable Diffusion Embedding | Civitai

https://civitai.com/models/33873/inzaniaks-lazy-textual-inversions

Lately I've been using just BadPic when creating pictures, without any other embedding or
negative prompt.

Add Details to your pictures
If you want to add details to your pictures, you can use a “detailer” LoRA like this one:
Detail Tweaker LoRA (细节调整LoRA) - v1.0 | Stable Diffusion LoRA | Civitai

With this, you can increase the amount of details in your pictures without drastically
changing their composition.

Change the style of your art
LoRAs are an incredible tool for any Stable Diffusion prompt engineer. There are a lot of
LoRAs available and they are incredibly easy to train. If you check my CivitAI+Patreon
pages, I have more than 100 different LoRAs available:

https://civitai.com/models/58390?modelVersionId=62833&source=post_page-----e2b299a70421--------------------------------

Here are the links if you are interested:

Scripts and Extensions
Ranbooru
GitHub - Inzaniak/sd-webui-ranbooru

Ranbooru is my custom script that can be used to parse tags from random pictures from
different boorus. This script is growing daily and has now a lot of different features that you
can check out on the Github above.

This script is incredibly useful when I want to mass-test my LoRAs and checkpoint on a high
amount of different tags.

ControlNet
GitHub - lllyasviel/ControlNet: Let us control diffusion models!

ControlNet is probably the best extension available for Stable Diffusion. With this extension,
you can apply a series of ML models to influence the diffusion process. For example, you
can use a picture of a particular pose as an input to change your generation, or you can use
a black and white sketch to create a colored version of that picture.

Once you’ve learned the basics, I highly recommend to also check out the stable-diffusion-
art comprehensive guide:

ControlNet v1.1: A complete guide - Stable Diffusion Art

CivitAI: Inzaniak Creator Profile | Civitai
Patreon: https://www.patreon.com/Inzaniak

https://github.com/Inzaniak/sd-webui-ranbooru
https://github.com/lllyasviel/ControlNet
https://stable-diffusion-art.com/controlnet/
https://civitai.com/user/Inzaniak/models
https://www.patreon.com/Inzaniak

Aspect Ratio Helper
GitHub - thomasasfk/sd-webui-aspect-ratio-helper: Simple extension to easily maintain
aspect ratio…

If you want to easily maintain aspect ratio while changing dimensions in AUTOMATIC1111
webui, you might want to try this extension.

It is a simple extension that adds a dropdown of configurable aspect ratios, to which the
dimensions will auto-scale. You can also lock the aspect ratio of the current dimensions or
the current image. You can also scale the dimensions by percentage or by maximum value.

https://github.com/thomasasfk/sd-webui-aspect-ratio-helper

